Ahn, J.-H., Kim, Y.-P., Lee, Y.-M., Seo, E.-M., Lee, K.-W., & Kim, H.-S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98–105. 10.1016/j.foodchem.2007.07.067
Ahsan, H. M., Zhang, X., Liu, Y., Wang, Y., Li, Y., Li, B., Wang, J., & Liu, S. (2020). Stable cellular foams and oil powders derived from methylated microcrystalline cellulose stabilized pickering emulsions. In Professor Pete Williams DSc PhD (Ed.), Food Hydrocolloids (Vol. 104). Elsevier Ltd. 10.1016/j.foodhyd.2020.105742
Akhtar, M., Murray, B. S., Afeisume, E. I., & Khew, S. H. (2014). Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocolloids, 34, 62–67. 10.1016/j.foodhyd.2012.12.025
Alavi, M. (2019). Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers, 19(1), 103–119. 10.1515/epoly-2019-0013
Alcântara, M. A., Lima, A. E. A. de, Braga, A. L. M., Tonon, R. V., Galdeano, M. C., Mattos, M. da C., Brígida, A. I. S., Rosenhaim, R., Santos, N. A. dos, & Cordeiro, A. M. T. de M. (2019). Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technology, 354, 877–885. 10.1016/j.powtec.2019.06.026
Amaral, P. H. R. do, Andrade, P. L., & Conto, L. C. de. (2019). Microencapsulation and Its Uses in Food Science and Technology: A Review. In F. Salaun (Ed.), Microencapsulation-Processes, Technologies and Industrial Applications (pp. 1–18). IntechOpen. 10.5772/intechopen.81997
Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Introduction to spray drying. In C. Anandharamakrishnan & S. P. Ishwarya (Eds.), Spray Drying Techniques for Food Ingredient Encapsulation (pp. 1–36). John Wiley & Sons Inc. 10.1002/9781118863985.ch1
Anwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 105(2), 367–378. 10.1016/j.jfoodeng.2011.02.047
AOAC. (2005a). Association of Official Analytical Chemistry (AOAC) Official Method 963.15, Lipid Content.
AOAC. (2005b). Solids (Total) and Moisture in Flour, Method 925.10. Official Methods of Analysis, 18th Edition.
Badan Standardisasi Nasional. (2008). SNI 1-7381-2008 Minyak Kelapa Virgin (VCO) (pp. 1–28). Badan Standarisasi Nasional.
Badan Standarisasi Nasional. (2009). SNI 4444:2009 Krimer Nabati Bubuk (pp. 1–37). Badan Standarisasi Nasional.
Bai, L., Huan, S., Xiang, W., & Rojas, O. J. (2018). Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization. Green Chemistry, 20(7), 1571–1582. 10.1039/c8gc00134k
Bazyma, L. A., & Kutovoy, V. A. (2005). Vacuum drying and hybrid technologies. Stewart Postharvest Review, 1(4), 1–4. 10.2212/spr.2005.4.7
Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. 10.1016/j.jfoodeng.2012.03.033
Chaijan, M., & Panpipat, W. (2017). Mechanism of Oxidation in Foods of Animal Origin. In R. Banerjee, K. A. Verma, & M. W. Siddiqui (Eds.), Natural Antioxidants (1st ed., pp. 1–37). Taylor & Francis Group. 10.1201/9781315365916-2
Condori, S. Q., Saldaña, M. D. A., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT-Food Science and Technology, 44(9), 1880–1887. 10.1016/j.lwt.2011.01.005
Costa, Medronho, Filipe, Mira, Lindman, Edlund, & Norgren. (2019). Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 11(10), 1570. 10.3390/polym11101570
Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J. B. (2020). Physical and Functional Properties, Digestibility, and Storage Stability of Spray-and Freeze-Dried Microencapsulated Bioactive Products from Moringa stenopetala Leaves Extract. Industrial Crops and Products, 156(2020), 1–10. 10.1016/j.indcrop.2020.112891
Das S., & Chaudhury A. (2011). Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech. 12(1): 62–76. 10.1208/s12249-010-9563-0
Dhar, N., Akhlaghi, S. P., & Tam, K. C. (2012). Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydrate Polymers, 87(1), 101–109. 10.1016/j.carbpol.2011.07.022
Díaz, C. B.-, Navarrete, M. O.-, Añual, M. S.-, Calderón, F. L.-, & Bustamante, M. (2020). Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Research International, 134, 109244. 10.1016/j.foodres.2020.109244
Esparza, Y., Ngo, T. D., & Boluk, Y. (2020). Preparation of powdered oil particles by spray drying of cellulose nanocrystals stabilized Pickering hempseed oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598(March), 124823. 10.1016/j.colsurfa.2020.124823
Farias, M. A., & Ratti, C. (2009). Dehydration of Foods: General Concepts. In C. Ratti (Ed.), Advances in Food Dehydration (pp. 1–36). Taylor & Francis Ltd.See AlsoBasics of emulsification phenomenon and stirring | newji
Fernandes, R. V. de B., Borges, S. V., & Botrel, D. A. (2013). Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência e Tecnologia de Alimentos, 33, 171–178. 10.1590/S0101-20612013000500025
Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. 10.1016/j.fbp.2011.12.002
Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473–482. 10.1016/j.foodres.2013.01.020
Gomes, A., Costa, A. L. R., & Cunha, R. L. (2018). Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids and Surfaces B: Biointerfaces, 164, 272–280. 10.1016/j.colsurfb.2018.01.032
Gong, Z., Zhang, M., & Sun, J. (2007). Physico-chemical properties of cabbage powder as affected by drying methods. Drying Technology, 25(5), 913–916. 10.1080/07373930701372239
Hadnadev, T. D., Dokić, P., Krstonošić, V., & Hadnadev, M. (2013). Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 115(3), 313–321. 10.1002/ejlt.201100321
Hee, Y. Y., Tan, C. P., Rahman, R. A., Adzahan, N. M., Lai, W. T., & Chong, G. H. (2015). Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying. International Journal of Food Engineering, 11(1), 61–69. 10.1515/ijfe-2014-0215
Hee, Y. Y., Tan, C. P., Rahman, R. A., Noranizan, M., Smith Jr, R. L., & Chong, G. H. (2017). Production of virgin coconut oil microcapsules from oil-in-water emulsion with supercritical carbon dioxide spray drying. The Journal of Supercritical Fluids, 130, 118–124. 10.1016/j.supflu.2017.07.037
Hirschle, P., Preiß, T., Auras, F., Pick, A., Völkner, J., Valdepérez, D., Witte, G., Parak, W. J., Rädler, J. O., & Wuttke, S. (2016). Exploration of MOF nanoparticle sizes using various physical characterization methods-is what you measure what you get? CrystEngComm, 18(23), 4359–4368. 10.1039/c6ce00198j
Horszwald, A., Julien, H., & Andlauer, W. (2013). Characterisation of Aronia powders obtained by different drying processes. Food Chemistry, 141(3), 2858–2863. 10.1016/j.foodchem.2013.05.103
Hu, Z., Ballinger, S., Pelton, R., & Cranston, E. D. (2015). Surfactant-enhanced cellulose nanocrystal Pickering emulsions. Journal of Colloid and Interface Science, 439, 139–148. 10.1016/j.jcis.2014.10.034
Iijima, H., & Takeo, K. (2000). Microcrystalline Cellulose: An Overview. In G. O. Phillips & P. A. Williams (Eds.), Handbook of Hydrocolloids (pp. 331–346). Woodhead Publishing Ltd.
ISO, & IDF. (2006). Milk Fat-Determination of Peroxide Value (ISO 3976-IDF 74) (2nd ed., pp. 1–13). ISO and IDF.
Joslyn, M. A., & Sano, T. (1956). The Formation and Decomposition of Green Pigment in Crushed Garlic Tissue. Journal of Food Science, 21(2), 170–183. 10.1111/j.1365-2621.1956.tb16908.x
Kamsiati, E. (2006). Pembuatan Bubuk Sari Buah Tomat (Licopersicon esculentum) dengan Metode “Foam-Mat Drying.” Teknologi Pertanian, 7(2), 113–119.
Kargar, M., Fayazmanesh, K., Alavi, M., Spyropoulos, F., & Norton, I. T. (2012). Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of Colloid and Interface Science, 366(1), 209–215. 10.1016/j.jcis.2011.09.073
Karthik, P., & Anandharamakrishnan, C. (2013). Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of its Stability with Spray-Drying and Freeze-Drying Methods. Food and Bioprocess Technology, 6(10), 2780–2790. 10.1007/s11947-012-1024-1
Ketaren, S. (1986). Pengantar Teknologi Minyak dan Lemak Pangan. UI Press.
Klinjapo, R., & Krasaekoopt, W. (2018). Microencapsulation of Color and Flavor in Confectionery Products. In A. M. Grumezescu & H. A. Maria (Eds.), Natural and Artificial Flavoring Agents and Food Dyes (pp. 457–494). Elsevier Inc. 10.1016/B978-0-12-811518-3.00014-4
Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576. 10.1016/j.foodchem.2015.08.066
Lim, A. S. L., & Roos, Y. H. (2017). Carotenoids stability in spray dried high solids emulsions using layer-by-layer (LBL) interfacial structure and trehalose-high DE maltodextrin as glass former. Journal of Functional Foods, 33, 32–39. 10.1016/j.jff.2017.03.006
Lin, C., He, G., Li, X., Peng, L., Dong, C., Gu, S., & Xiao, G. (2007). Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplets. Separation and Purification Technology, 56(2), 175–183. 10.1016/j.seppur.2007.01.035
Liu, Y., Zhao, Y., & Feng, X. (2008). Exergy analysis for a freeze-drying process. Applied Thermal Engineering, 28(7), 675–690. 10.1016/j.applthermaleng.2007.06.004
Mayasari, E., Rahayuni, T., & Manalu, J. (2019). Pengaruh Formulasi Maltodekstrin Dan Tween 80 Pada Karakteristik Fisikokimia Bumbu Herbal Instan. Pro Food, 5(2), 479. 10.29303/profood.v5i2.102
McClements, D. J. (2005). Food Emulsions: Principles, Practices, and Techniques. In D. J. McClements (Ed.), Food Emulsions: Principles, Practices, and Techniques, Sec (2nd ed.). Taylor & Francis Inc.
McNamee, B. F., O’Riorda, E. D., & O’Sullivan, M. (1998). Emulsification and Microencapsulation Properties of Gum Arabic. Journal of Agricultural and Food Chemistry, 46(11), 4551–4555. 10.1021/jf9803740
Melgosa, R., Román, Ó. B., Sanz, M. T., Paz, E. de, & Beltrán, S. (2019). Omega–3 encapsulation by PGSS-drying and conventional drying methods. Particle characterization and oxidative stability. Food Chemistry, 270, 138–148. 10.1016/j.foodchem.2018.07.082
Michalska, A., & Lech, K. (2018). The Effect of Carrier Quantity and Drying Method on the Physical Properties of Apple Juice Powders. Beverages, 4(1), 2. 10.3390/beverages4010002
Moreno, T., de Paz E., Navarro, I., Rojo, S. R., Matías, A., Duarte, C., Buenhombre, M. S., & Cocero, M. J. (2016). Spray Drying Formulation of Polyphenols-Rich Grape Marc Extract: Evaluation of Operating Conditions and Different Natural Carriers. Food and Bioprocess Technology, 9, 2046–2058. 10.1007/s11947-016-1792-0
Mubarak, S. (2017). Pengaruh Penyimpanan Minyak Jelantah Terhadap Bilangan Peroksida. Jurnal Ilmiah Kesehatan Iqra, 5(1), 42–47.
Muhamad, I. I., Jusoh, Y. M. M., Nawi, N. M., Aziz, A. A., Padzil, A. M., & Lian, H. L. (2018). Advanced Natural Food Colorant Encapsulation Methods: Anthocyanin Plant Pigment. In M.A. Grumezescu & H. A. Maria (Eds.), Natural and Artificial Flavoring Agents and Food Dyes (pp. 495–526). Elsevier. 10.1016/B978-0-12-811518-3.00015-6
Mutlu, C., Koç, A., & Erbaş, M. (2020). Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT, 134, 110166. 10.1016/j.lwt.2020.110166
Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815. 10.1016/j.profoo.2011.09.265
Ngamwonglumlert, L., & Devahastin, S. (2017). Microstructure and its relationship with quality and storage stability of dried foods. In S. Devahastin (Ed.), Food Microstructure and Its Relationship with Quality and Stability. Elsevier Ltd. 10.1016/B978-0-08-100764-8.00008-3
Nurhadi, B., Andoyo, R., Mahani, & Indiarto, R. (2012). Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal, 19(3), 849–854.
Nurhadi, B., & Roos, Y. H. (2017). Influence of anti-caking agent on the water sorption isotherm and flow-ability properties of vacuum dried honey powder. Journal of Food Engineering, 210, 76–82. 10.1016/j.jfoodeng.2017.04.020
Nurhasanah, S., Wulandari, N., Munarso, S. J., & Hariyadi, P. (2019). Production of structured lipids rich in triacylglycerols containing medium-chain fatty acids and unsaturated fatty acids at the Sn-2 position through enzymatic interesterification. International Journal on Advanced Science, Engineering and Information Technology, 9(5), 1624–1630. 10.18517/ijaseit.9.5.10076
Parikh, D. M. (2015). Vacuum Drying: Basics and application. Chemical Engineering (United States), 122(4), 48–54.
Parrish, C. R. (2017). The Use of Medium-Chain Triglycerides in Gastrointestinal Disorders. Nutrition Issues in Gastroenterology, Series #160, 160(February), 20–28.
Partanen, R., Raula, J., Seppaünen, R., Buchert, J., Kauppinen, E., & Forssell, P. (2008). Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. Journal of Agricultural and Food Chemistry, 56(14), 5717–5722. 10.1021/jf8005849
Pasrija, D., Ezhilarasi, P. N., Indrani, D., & Anandharamakrishnan, C. (2015). Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT-Food Science and Technology, 64(1), 289–296. 10.1016/j.lwt.2015.05.054
Patil, U., Benjakul, S., Prodpran, T., Senphan, T., & Cheetangdee, N. (2016). Characteristics and quality of virgin coconut oil as influenced by maturity stages. Carpathian Journal of Food Science and Technology, 8(4), 103–115.
Pereira, A. R. L., Cattelan, M. G., & Nicoletti, V. R. (2019). Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581(August), 123806. 10.1016/j.colsurfa.2019.123806
Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. Journal of Colloid and Interface Science, 352(1), 128–135. 10.1016/j.jcis.2010.08.021
Piwińska, M., Wyrwisz, J., Kurek, M., & Wierzbicka, A. (2015). Hydration and physical properties of vacuum-dried durum wheat semolina pasta with high-fiber oat powder. LWT-Food Science and Technology, 63(1), 647–653. 10.1016/j.lwt.2015.03.022
Rahman, M. S., & Perera, C. O. (2007). Drying and Food Preservation. In M. S. Rahman (Ed.), Handbook of Food Preservation (2nd ed., pp. 403–432). Taylor & Francis Inc.
Rajabi, H., Ghorbani, M., Jafari, S. M., Sadeghi, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337. 10.1016/j.foodhyd.2015.05.033
Raman, A. K. Y., & Aichele, C. P. (2020). Influence of non-ionic surfactant addition on the stability and rheology of particle-stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124084. 10.1016/j.colsurfa.2019.124084
Ré, M. I. (1998). Microencapsulation by Spray Drying. Drying Technology, 16(6), 1195–1236. 10.1080/07373939808917460
Reis, F. R. (2014). Studies on Conventional Vacuum Drying of Foods (pp. 7–18). 10.1007/978-3-319-08207-3_2
Román, Ó. B., Sanz, T., & Beltrán, S. (2020). Microencapsulation of rice bran oil using pea protein and maltodextrin mixtures as wall material. Heliyon, 6(4), e03615. 10.1016/j.heliyon.2020.e03615
Sansone, F., Mencherini, T., Picerno, P., D’Amore, M., Aquino, R.P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468–476. 10.1016/j.jfoodeng.2011.03.004
Sarungallo, Z. L., Santoso, B., Roreng, M. K., & Murni, V. (2019). Karakteristik Mutu Mikroenkapsulat Minyak Buah Merah (Pandanus conoideus) Dengan Perbandingan Konsentrasi Bahan Pengemulsi dan Bahan Pelapis. 5(2).
Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies, 39, 101–112. 10.1016/j.ifset.2016.11.011
Smrdel, P., Bogataj, M., Zega, A., Planinšek, O., & Mrhar, A. (2008). Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation. Journal of Microencapsulation, 25(2), 90–105. 10.1080/02652040701776109
Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying. Innovative Food Science & Emerging Technologies, 6(1), 107–114. 10.1016/j.ifset.2004.09.003
Stapley, A. G. F. (2008). Freeze drying, In: Evans J. A. (Ed.). Frozen Food Science and Technology, Blackwell, Oxford, UK, 248–275.
Tinay, I. A. El, & Ismail, A. H. (1985). Effect of some additives and processes on the characteristics of agglomerated and granulated spray-dried Roselle powder, Acta Aliment. In Hungaricae 14 (pp. 238–295).
Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. 10.1016/j.jbiotec.2016.10.001
Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. 10.1016/j.jfoodeng.2008.02.029
Tonon, R. V., Pedro, R. B., Grosso, C. R. F., & Hubinger, M. D. (2012). Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Drying Technology, 30(13), 1491–1501. 10.1080/07373937.2012.696227
Vashisth, C., Whitby, C. P., Fornasiero, D., & Ralston, J. (2010). Interfacial displacement of nanoparticles by surfactant molecules in emulsions. Journal of Colloid and Interface Science, 349(2), 537–543. 10.1016/j.jcis.2010.05.089
Vicente, J., Pereira, L. J. B., Bastos, L. P. H., Carvalho, M. G. de, & Rojas, E. E. G. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. 10.1016/j.ijbiomac.2018.08.041
Wei, Z., Cheng, J., & Huang, Q. (2019). Food-grade Pickering emulsions stabilized by ovotransferrin fibrils. Food Hydrocolloids, 94, 592–602. 10.1016/j.foodhyd.2019.04.005
Widodo, H., Adhani, L., Solihatun, Prastya, M., & Annisa, A. (2020). Pemanfaatan Minyak Cengkeh Sebagai Antioksidan Alami untuk Menurunkan Bilangan Peroksida Pada Produk Minyak Goreng. Jurnal Penelitian Dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti, 5(1), 77–90.
Wilkowska, A., Czyżowska, A., Ambroziak, W., & Adamiec, J. (2017). Structural, physicochemical and biological properties of spray-dried wine powders. Food Chemistry, 228, 77–84. 10.1016/j.foodchem.2017.01.115
Xie, J., Luo, Y., Chen, Y., Liu, Y., Ma, Y., Zheng, Q., Yue, P., & Yang, M. (2019). Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydrate Polymers, 213, 128–137. 10.1016/j.carbpol.2019.02.064
Xu, D., Zhang, J., Cao, Y., Wang, J., & Xiao, J. (2016). Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT-Food Science and Technology, 66, 590–597. 10.1016/j.lwt.2015.11.002
Yam, K. L., & Papadakis, S. E. (2004). A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering, 61(1), 137–142. 10.1016/S0260-8774(03)00195-X
Yanuwar, W., Widjanarko, S. B., & Wahono, T. (2007). Characteristics and antioxidant stability of red fruit (Pandanus conoideus Lam) protein based microcapsule. Jurnal Teknologi Pertanian, 8(2), 127–135.
Zhang, M., Yang, B., Liu, W., & Li, S. (2017). Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian Journal of Pharmaceutical Sciences, 12(6), 521–531. 10.1016/j.ajps.2017.05.009
Zhang, R., Zhou, L., Li, J., Oliveira, H., Yang, N., Jin, W., Zhu, Z., Li, S., & He, J. (2020). Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT, 123, 109097. 10.1016/j.lwt.2020.109097
Zhang, S., Chen, J., Yin, X., Wang, X., Qiu, B., Zhu, L., & Lin, Q. (2017). Microencapsulation of tea tree oil by spray-drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. Journal of Applied Polymer Science, 134(13), 1–10. 10.1002/app.44662
Zhong, Q., Jin, M., Davidson, P. M., & Zivanovic, S. (2009). Sustained release of lysozyme from zein microcapsules produced by a supercritical anti-solvent process. Food Chemistry, 115(2), 697–700. 10.1016/j.foodchem.2008.12.063